Webb and Hubble team up to trace interstellar dust – ‘We have more than expected’

Overlapping Galaxies VV 191

By combining data from NASA’s James Webb Space Telescope and NASA’s Hubble Space Telescope, the researchers were able to trace the light emitted by the Large White Elliptical Galaxy on the left through the Spiral Galaxy on the right. As a result, they were able to identify the effects of interstellar dust in the spiral galaxy. Webb’s near-infrared data also shows us the galaxy’s longer, extremely dusty spiral arms in much greater detail, making them appear to overlap with the central bulge of the bright white elliptical galaxy on the left, though the pair do not interact. In this image, green, yellow, and red have been assigned to Webb’s near-infrared data taken at 0.9, 1.5, and 3.56 microns (F090W, F150W, and F356W respectively). Blue was attributed to two Hubble filters, ultraviolet data taken at 0.34 microns (F336W) and visible light at 0.61 microns (F606W).
Credit: Science: NASA, ESA, CSA, Rogier Windhorst (ASU), William Keel (University of Alabama), Stuart Wyithe (University of Melbourne), JWST PEARLS team, Image processing: Alyssa Pagan (STScI)

“We got more than we bargained for by combining data from

Nasa
Founded in 1958, the National Aeronautics and Space Administration (NASA) is an independent agency of the United States federal government that succeeded the National Advisory Committee for Aeronautics (NACA). It is responsible for the civil space program, as well as aeronautical and aerospace research. His view is "Discover and expand knowledge for the benefit of humanity." Its core values ​​are "safety, integrity, teamwork, excellence and inclusion."

” data-gt-translate-attributes=”[{” attribute=””>NASA’s

VV 191 is the latest addition to a small number of galaxies that helps researchers directly compare the properties of galactic dust. This target was selected from nearly 2,000 superimposed galaxy pairs identified by Galaxy Zoo citizen science volunteers.

Because dust changes the brightness and colors that appear in images of the galaxies, it is important to understand where dust is present in them. Since dust grains are partially responsible for the formation of new stars and planets, astronomers are always striving to identify their presence for further investigations.

Lensed Galaxies in VV 191

Researchers identified a previously unknown lensed galaxy for the first time in new near-infrared data from NASA’s James Webb Space Telescope. Above the white elliptical galaxy at left, a faint red arc appears in the inset at 10 o’clock. This is a very distant galaxy whose appearance is warped. Its light is bent by the gravity of the elliptical foreground galaxy. Plus, its appearance is duplicated. The stretched red arc is warped where it reappears – as a dot – at 4 o’clock. In this image, green, yellow, and red were assigned to Webb’s near-infrared data taken in 0.9, 1.5, and 3.56 microns (F090W, F150W, and F356W respectively). Blue was assigned to two Hubble filters, ultraviolet data taken in 0.34 microns (F336W) and visible light in 0.61 microns (F606W).
Credit: Science: NASA, ESA, CSA, Rogier Windhorst (ASU), William Keel (University of Alabama), Stuart Wyithe JWST PEARLS Team, Image Processing: Alyssa Pagan (STScI)

The image also holds a second discovery that’s easier to overlook. Carefully examine the white elliptical galaxy at left. A faint red arc appears in the inset at 10 o’clock. This arc is a very distant galaxy whose light is bent by the gravity of the elliptical foreground galaxy – and its appearance is duplicated. The stretched red arc is warped where it reappears – as a dot – at 4 o’clock. Because these images of the lensed galaxy are so faint and so red that they went unrecognized in Hubble data. However, they are unmistakable in Webb’s near-infrared image. Simulations of gravitationally lensed galaxies like this help astronomers reconstruct how much mass is in individual stars, as well as how much dark matter is in the core of this galaxy.

As with many images from the James Webb Space Telescope, this image of VV 191 shows additional galaxies deeper and deeper in the background. Two patchy spirals to the upper left of the elliptical galaxy have similar apparent sizes, but show up in very different colors. One is likely very dusty and the other very far away, but astronomers will need to obtain data known as spectra to determine which is which.

References:

“Webb’s PEARLS: dust attenuation and gravitational lensing in the backlit-galaxy system VV 191” by William C. Keel, Rogier A. Windhorst, Rolf A. Jansen, Seth H. Cohen, Benne Holwerda, Sarah T. Bradford, Clayton D. Robertson, Giovanni Ferrami, Stuart Wyithe, Haojing Yan, Christopher J. Conselice, Simon P. Driver, Norman A. Grogin, Christopher N.A. Willmer, Anton M. Koekemoer, Brenda L. Frye, Nimish P. Hathi, Russell E. Ryan Jr., Nor Pirzkal, Madeline A. Marshall, Dan Coe, Jose M. Diego, Thomas J. Broadhurst, Michael J. Rutkowski, Lifan Wang, S.P. Willner, Andreea Petric, Cheng Cheng and Adi Zitrin, 30 August 2022, Astrophysics > Astrophysics of Galaxies.
arXiv:2208.14475

“Webb’s PEARLS: Prime Extragalactic Areas for Reionization and Lensing Science: Project Overview and First Results” by Rogier A. Windhorst, Seth H. Cohen, Rolf A. Jansen, Jake Summers, Scott Tompkins, Christopher J. Conselice, Simon P. Driver, Haojing Yan, Dan Coe, Brenda Frye, Norman Grogin, Anton Koekemoer, Madeline A. Marshall, Nor Pirzkal, Aaron Robotham, Russell E. Ryan Jr., Christopher N. A. Willmer, Timothy Carleton, Jose M. Diego, William C. Keel, Rosalia O’Brien, Paolo Porto, Caleb Redshaw, Sydney Scheller, Andi Swirbul, Stephen M. Wilkins, S. P. Willner, Adi Zitrin, Nathan J. Adams, Duncan Austin, Richard G. Arendt, John F. Beacom, Rachana A. Bhatawdekar, Larry D. Bradley, Thomas J. Broadhurst, Cheng Cheng, Francesca Civano, Liang Dai, Herve Dole, Jordan C. J. D’Silva, Kenneth J. Duncan, Giovanni G. Fazio, Giovanni Ferrami, Leonardo Ferreira, Steven L. Finkelstein, Lukas J. Furtak, Alex Griffiths, Heidi B. Hammel, Kevin C. Harrington, Nimish P. Hathi, Benne W. Holwerda, Jia-Sheng Huang, Minhee Hyun, Myungshin Im, Bhavin A. Joshi, Patrick S. Kamieneski, Patrick Kelly, Rebecca L. Larson, Juno Li, Jeremy Lim, Zhiyuan Ma, Peter Maksym, Giorgio Manzoni, Ashish Kumar Meena, Stefanie N. Milam, Mario Nonino, Massimo Pascale, Justin D. R. Pierel, Andreea Petric, Maria del Carmen Polletta, Huub J. A. Rottgering, Michael J. Rutkowski, Ian Smail, Amber N. Straughn, Louis-Gregory Strolger, James A. A. Trussler, Lifan Wang, Brian Welch, J. Stuart B. Wyithe, Min Yun, Erik Zackrisson, Jiashuo Zhang and Xiurui Zhao, 9 September 2022, Astrophysics > Cosmology and Nongalactic Astrophysics.
arXiv:2209.04119

Webb interdisciplinary scientist Rogier Windhorst of Arizona State University and his team obtained the data used in this image from early results of the Prime Extragalactic Areas for Reionization and Lensing Science (PEARLS) JWST Guaranteed Time Observation (GTO) programs, GTO 1176 and 2738. Additional data from Hubble’s STARSMOG snapshot program (SNAP 13695) and GO 15106, were added. Jake Summers, also of Arizona State, performed the pipeline data reduction. The dust analysis was led by William Keel of the University of Alabama, while the Hubble data acquisition was led by Benne Holwerda of the University of Louisville in Kentucky. The detailed gravitational-lensing analysis was conducted by Giovanni Ferrami and Stuart Wyithe, both of the University of Melbourne, Australia and ASTRO 3D, Australia.


#Webb #Hubble #team #trace #interstellar #dust #expected

Leave a Reply

Your email address will not be published.

Adblock Detected

من فضلك لاستخدام خدمات الموقع قم بإيقاف مانع الاعلانات